Global Lithuanian Net: san-taka station: |
Juodosios skylės ne tokios jau ir juodos
Taip pat skaitykite: Juodųjų skylių paradoksai Biblijos pradžioje: Ir pavadino Dievas šviesą diena, o tamsą naktimi. Ir buvo vakaras, ir buvo rytas; diena viena. Dažnai verčia pirma diena, bet tai neteisinga, nes nebuvo ankstesnės. Matyt mintis, kad ir laikas turėjo būti sukurtas, nedavė ramybės ir Biblijos autoriams. Ir baigiant Bibliją, Apreiškime Jonui sakoma (Apr 10:6): ... ir laiko daugiau nebus. Laiko klausimas traukė ir ankstyvųjų Viduramžių krikščionių filosofus. Palaimintojo Augustino Išpažintyje skaitome: Jei anksčiau dangaus ir žemės nebuvo laiko, kam klausti, ką Tu tada darei? Kai nebuvo laiko, nebuvo ir tada. Taip ir mūsų laikais, kai pasirodė A.A. Fridmano1) darbas apie tai, kad Visata prasideda nuo ypatingumo taško, kuriame kreivumas pasiekia begalybę, o kartu ir materijos tankis. Jame netenka prasmės fizikiniai dėsniai ir nėra prasmės tęsti laiko koordinatę už to singuliarumo. Įrodyta, kad klasikinės Einšteino gravitacijos rėmuose nėra bendrosios reliatyvumo teorijos (Einšteino-Hilberto) lygčių sprendinių, kurie neturėtų ypatingumų. Ypatingumai būdingi ne tik Visatai, bet ir atskiroms žvaigždėm. Singuliarumo problemą nagrinėjo R. Penrouzas2),
įrodęs, kad prasidėjęs žvaigždės kolapsas negali sustoti. Bet juodoji skylė ir Visata turi esminį skirtumą.
Juodosios skylės kolapsą stebime iš išorės, ir stebėtojui, esančiam begaliniu atstumu, kur juodosios skylės gravitacinis laukas
kiek norime silpnas, kolapso trukmė yra begalinė. T.y. stebėtojas niekada nesulauks kolapso pabaigos. Visatoje
Tačiau abu atvejai turi bendrą bruožą procesas nenutraukiamas. Ir jei Visatos atveju tai kažkaip suprantama (išsisklaidymo atvejai lydi evoliuciją), tai kolapso nenutrūkstamumas ne toks aiškus. Visatos plėtimasis didina entropiją, bet ar galima entropiją priskirti juodajai skylei? Kai medžiaga krenta į juodąją skylę, jos paviršiaus plotas gali tik didėti. Juodosios skylės skersmuo proporcionalus jos masei, o paviršius masei kvadratu. Kai masė auga, didėja ir paviršius. Toliau S. Hokingas pažymi, kad kai dvi juodosios skylės susilieja į vieną, tai naujos skylės paviršius didesnis nei abiejų buvusių juodųjų skylių bendras paviršius. Kitą žingsnį žengė amerikietis Dž. Birkensteinas, 1973 m. išsakęs drąsią prielaidą, kad juodajai skylei galima priskirti entropijos sąvoką; ir kad entropija proporcinga jos paviršiui. Su laiku paviršius didėja, neblogai imituodamas entropijos elgseną. Atrodžiusi įtartina hipotezė pas Hokingą virto griežta teorema. Kaip paaiškėjo, ji seka iš kvantinės mechanikos ir bendrosios reliatyvumo teorijos dėsnių. Toliau sekė naujų teiginių grandinė. Jei juodoji skylė turi entropiją, tai ji privalo turėti ir temperatūrą. Termodinamika leidžia paskaičiuoti, kad jei entropija apibrėžiama energijos kvadratu ir nepriklauso dar, pvz., nuo tūrio, tai temperatūra turi būti atvirkščiai proporcinga juodosios skylės energijai (arba masei). Bet lengva suprasti, kad tokia išvada nelabai dera su juodosios skylės samprata. Į juodąją skylę krentantis kūnas aprašomas mechanikos lygtimis, kur nėra vietos entropijai. Tačiau mechanikos lygtys yra atvirkščios laike, o žvaigždės kolapsas negrįžtamas. Teorijoje turi atsirasti entropija ir temperatūra. Tačiau tada savo reikalavimus iškelia termodinamika. Bet koks temperatūrą turintis kūnas turi spinduliuoti pagal Stefano-Bolcmano dėsnį (su Planko spektru). Taigi, priešingai apibrėžimui, juodoji skylė spinduliuoja ir spinduliavimo intensyvumas didėja pagal ketvirtą temperatūros laipsnį. Juodosios skylės ne tokios jau ir juodos. Kokia to spinduliavimo fizikinė prasmė? Aišku, atsakymo nėra Einšteino teorijoje, tad tenka vėl kreiptis į kvantinę mechaniką, kas ne taip ir nelaukta, nes jau Bikenstino entropijos formulėje kilo sunkumų su koeficiento, keičiančio plotą į bematę entropiją, matu. Vieninteliu dydžiu, kuriuo galima būtų numatinti plotą, buvo Planko ilgio kvadratas, lygus 10-33. susidedantis iš Planko konstantos ir gravitacinės konstantos. Neįtraukiant Planko konstantos, entropijos formulės išvesti nepavyksta. Pirmąjį sprendimo variantą pasiūlė J.B. Zeldovičius3) ir A.A. Starobinskis4): jei juodoji skylė sukasi, ji privalo spinduliuoti. S. Hokingas tą idėją išnagrinėjo nuodugniau, kai jos autoriai ją Hokingui papasakojo 1973 m. Paaiškėjo, kad juodajai skylei nebūtina suktis: spinduliuoja vakuumas, į kurį jinai panirusi. Tai beveik mistinė vakuumo - erdvės, kurioje nieko nėra savybė. Tačiau kvantinėje mechanikoje net jei nieko nėra, kažkas vyksta. Tuščiame vakuume randasi laukai, ir nors laukų, pvz., magnetinio, dydžiai vidutiniškai lygūs nuliui, jų kvadratai (arba ažbsoliučios reikšmės) nuliu nevirsta net vidurkinant (bent jau todėl, kad jie visad teigiami). Šalia juodosios skylės tokios fliuktuacijos gimdo poras, kurių masė beveik lygi nuliui, nes didelis (neigiamas) potencialas kompensuoja laisvųjų elektronų ir pozitronų masę. Gimusių porų likimai skiriasi. Viena dalelė prasmenga į juodąją bedugnę ir mums liaujasi egzistavusi. Tačiau dalelė ne veltui atidavė savo gyvybę jos energija perduota antrajai dalelei, suteikdama galimybę išsiveržti iš gravitacinės nelaisvės. Tai ir yra Hokingo spinduliavimas. Spinduliavimo spektro paskaičiavimai atvedė prie Planko formulės. Taip buvo paneigta nuomonė, kad juodosios skylės nemirtingos. Tiesa, tas spinduliavimas trumpina tik mažos juodosios skylės gyvenimą protono dydžio (10-13 cm) juodoji skylė, gimusi per Didįjį sprogimą, iki mūsų dienų neišgyventų. Tačiau juodosios skylės gyvenimo trukmė auga proporcingai jos spindulio kubui. 3 km skersmens juodajai skylei (gravitacinis Saulės spindulys) gyvenimo trukmė tokia didelė, kad jos neverta net skaičiuoti. Vis tik juodajai skylei lemta išnykti. Kaip tai nutiks, mokslas nežino. Galima tik pasakyti, kad galutinių būsenų yra tiek daug, kad dabar jos žūties niekas negali nuspėti. Kaip ir nuspėti, į kokias šukes suduš į akmenį trenktas stiklinis butelis... Pirmąkart apie juodąją skylę 1783 m. prabilo anglas Dž. Mičelas5), parašęs, kad jei kūnas su tankiu lygiu Saulės tankiui, turėtų 500 kartų mažesnį tūrį, tai tokio kūno išspinduliuota šviesa turėtų grįžti atgal dėl savo sunkumo. Mičelas apie tai mąstė ne šiaip sau. Jam labai norėjosi rasti tolimų žvaigždžių masės matavimo būdą. Jam šviesą sudarė korpuskulos, kurios, įveikdamos gravitacinį žvaigždės lauką (apibrėžiamą jos mase), netenka greičio. Būtent taip jis priėjo prie savo išvados. Taiau jam svarbesne buvo jo aptikto reiškinio pasekmė: norint nustatyti žvaigždės masę reikia Žemėje išmatuoti iš tos žvaigždės atsklindančios šviesos greitį. Šiandien jau žinom, kad matuoti reikia ne šviesos greitį, o jos dažnio pokytį raudonąjį poslinkį. Tačiau tam laikmečiui idėja atrodė gražiai. Matematika atsisako aprašyti realią Visatą. O kad teorija būtų nuosekli, reikia atsisakyti ir įprastinio laiko. Galimų visatų aprašymui tenka pereiti prie menamo laiko, Minkovskio erdvę pakeičiant labiau suprantama Euklido erdve, kurioje dingsta ypatingi taškai (taip Žemės poliai geometriškai nesiskiria nuo pusiaujo taškų). Sferos, kaip ir bet kurio kito uždaro paviršiaus, ribų nėra, nors ... yra nauja ribinė sąlyga. Visai paprasta, tačiau, gaila, ne visai suprantama! Juk nuo singuliarumo prasidedanti istorija vystosi kartu su mumis realiu laiku, tad mūsų psichologinis laikas yra ne tas, kuriame aprašomas Visatos vystymasis. Idėja atrodo patraukli, tačiau dar reikia kad praeitų pakankamai laiko, kad ji taptų suprantama. Trumpos biografijos 1)
Aleksandras Fridmanas (1888-1925) - rusų fizikas, geofizikas ir matematikas, žinomas kaip Visatos
plėtimosi teorijos pradininkas (1922-24). Tai nustatė iš savo išvestos (dabar vadinamų Fridmanų) lygčių sistemos. 2) Rodžeris Penrouzas (Sir Roger Penrose, g. 1931 m.) - anglų mokslininkas, matematikas ir matematinės fizikos atstovas, mokslo filosofas. Žinomas savo indėliu į bendrąją reliatyvumo teoriją ir kosmologiją. Sukūrė tvisterių teoriją (1967). 1969 m. pasiūlė kosminės cenzūros hipotezę, pagal kurią pačios Visatos savybės neleidžia stebėti singuliarumams būdingo neapibrėžtumo, juos uždengiant įvykių horizontais. 1971 m. sukūrė spinų tinklų teoriją, vėliau panaudotą aprašant erdvėlaikio geometriją kilpų kvantinėje gravitacijoje. Kartu su S. Hokingu 1988 m. pasidalijo Wolf premiją už indėlį Visatos pažinimui. 1994 m. Anglijos karalienė už mokslo vystymą jam suteikė riterio vardą. 2004 m. išleido knygą Kelias į tikrovę, kurioje išdėstė savo požiūrį į Visatos dėsnius. Paskutiniajame 20 a. dešimtm. sukūrė (kartu su S. Hameroffu) kvantinio neurokompiutingo teoriją sąmonės Orch OR modelio pagalba, kai smegenų veikla nagrinėjama kaip kvantinis procesas. 1989 m. išleido knygą Naujasis karaliaus protas apie kvantinę sąmonę. 3) Jakovas Zeldovičius (1914-1987) baltarusų kilmės tarybinis fizikas ir fiziko-chemikas, suvaidinęs svarbų vaidmenį kuriant branduolinių (1949) ir termobranduolinių ginklų (1953) kūrime. Prisidėjo prie adsorbcijos, katalizės, sprogimų teorijos, branduolinės fizikos, el. dalelių fizikos, astrofizikos, kosmologijos ir bendrosios reliatyvumo teorijos vystymo. 1964 m. nepriklausomai nuo E. Solpiterio iškėlė prielaidą, kad kvazarų energijos šaltiniais yra akreciniai diskai aplink masyvias juodąsias skyles. 4)
Aleksejus Starobinskis (g. 1948 m.) rusų astrofizikas ir kosmologas, akademikas, vienas infliacijos
teorijos kūrėjų. Su A. Linde ir
A. Gutu
2014 m. gavo Kavli premiją kosminės infliacijos novatoriškus tyrimus.
Parodė S. Hokingui, kad dėl kvantinio neapibrėžtumo principo besisukančios
juodosios skylėsreliktinio spinduliavimo fliuktuacijų atradėjų. 5) Džonas Mičelas (John Michell, 1724-1793) anglų dvasininkas, gamtos filosofijos, padaręs gilių įžvalgų daugelyje mokslo sričių: astronomiją, geologiją, optiką, gravitaciją. Jis pirmasis pasiūlė juodųjų skylių idėją, pirmasis pasiūlęs, kad žemės drebėjimai keliauja kaip bangos, pirmasis paaiškinęs kaip sukurti dirbtinį magnetą, pirmasis panaudojęs statistikos metodus kosmoso tyrimams, pirmasis teigė, kad dvinarės žvaigždės yra tarpusavio gravitacijos produktas. Taip pats sukūrė prietaisą Žemės masei išmatuoti. Jis laikomas seismologijos ir magnetometrijos pirmtaku. Papildomai skaitykite:
|