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Exact relativistic ‘antigravity’ propulsion
F. S. Felbera)

Physics Division, Starmark, Inc., P. O. Box 270710, San Diego, California 92198

The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravita-
tional field of a mass moving with constant velocity. At radial approach or recession speeds faster
than 1/ 23! times the speed of light, even a small mass gravitationally repels a payload. At relativistic
speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with
negligible stresses on the payload.

PACS Numbers: 04.20.Jb, 04.25.–g, 04.25.–g

This paper calculates from the exact Schwarzschild solu-
tion [1–3] of Einstein’s field equation the relativistically exact
motion of a payload in the gravitational field of a source mov-
ing with constant velocity. In the inertial frame of an ob-
server far from the interaction between the source and pay-
load, the payload motion is calculated exactly for relativistic
speeds of both the source and payload and for strong gravita-
tional fields of the source. This paper presents the first rela-
tivistically exactsolution of the unbound orbits of test parti-
cles in the time-dependentgravitational field of a moving
mass.

The relativistically exact bound and unbound orbits of test
particles in the strong static field of a stationary mass have
been thoroughly characterized, for example, in [1–3]. Earlier
calculations [1,2,4–6] of the gravitational fields of arbitrarily
moving masses were done only to first order in the ratio of
source velocity to the speed of light, c. Even in a weak static
field, these earlier calculations have only solved the geodesic
equation for a nonrelativistictest particle in the slow-velocity
limit of source motion. In this slow-velocity limit, the field at
a moving test particle has terms that look like the Lorentz
field of electromagnetism, called the ‘gravimagnetic’ or
‘gravitomagnetic’ field [2,5,6]. Harris [5] derived the nonre-
lativistic equations of motion of a moving test particle in a
dynamic field, but only the dynamic field of a slow-velocity
source.

An exact solution of the field of a relativistic mass is the
Kerr solution [1,2,3,7], which is the exact stationary (time-
independent) solution for a rotationally symmetric rotating
mass. In the stationary Kerr gravitational field of a spinning
mass, the relativistic unbound orbits of test particles have
been approximated in [8].

The relativistically exact calculation in this paper shows
that a mass radially approaching or receding from a payload
with a relative velocity faster than 1/ 23 c! gravitationally re-
pels the payload, as seen by a distant inertial observer. This
‘antigravity’ is perhaps not so surprising when one considers
the following:

(1) The velocity of a particle radially incident on a sta-
tionary black hole approaches zero as the particle approaches
the event horizon, as seen by a distant inertial observer. An-
other distant inertial observer would see the same interaction
as a black hole approaching the particle, initially at rest, and
causing the particle to accelerate awayfrom the black hole
until the particle attains a speed near the horizon asymptoti-
cally approaching the speed of the black hole.

(2) Although time-independent, the Kerr field exhibits an
inertial-frame-dragging effect [1,2,6] similar to that contribut-
ing to gravitational repulsion at relativistic velocities, namely,
__________________________
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a force in the direction of the moving mass. The inertial-
dragging force can dominate the radial force of attraction,
even near a black hole. Inside the so-called ‘static limit’ sur-
face of a spinning black hole, an observer can theoretically
halt his descent into the black hole, but cannot halt his angular
motion induced by inertial-frame dragging [1].

(3) Because the affine connection is non-positive-definite,
a “general prediction” has been made that general relativity
could admit a repulsive force at relativistic speeds [9]. But
since the repulsive-force terms are second-order and higher in
source velocity, this ‘antigravity’ at relativistic speeds has not
previously been found.

Particularly noteworthy in the new exact solutions is that
above a critical velocity any mass, no matter how light or how
distant, produces an ‘antigravity’ field. Though at least twice
as strong in the forward direction of motion, the ‘antigravity’
field even repels particles in the backward direction. This
means that a stationary mass will repel masses that are ra-
dially receding from it at speeds greater than 1/ 23 c! , with
obvious cosmological implications.

This paper calculates the exact motion imparted to test
particles or payloads by a source moving at constant velocity.
A strong gravitational field is not necessary for ‘antigravity’
propulsion. Solely for the purpose of deriving an exact solu-
tion, however, the source is considered to be much more mas-
sive than the payload, so that the energy and momentum de-
livered to the payload have negligible reaction on the source
motion.

Figure 1 illustrates the two-step approach of this paper to
calculating the exact motion of a payload mass m in the field
of a source of mass M and constant velocity c 0â . First, the

FIG. 1. Two-step exact solution of ‘antigravity’ propulsion of a pay-
load mass m by a relativistic mass M: (a) Schwarzschild solution in
static field of M; and (b) solution Lorentz-transformed to initial rest
frame of payload far from M. Primes denote Lorentz-transformed
quantities.
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unique trajectory in the static Schwarzschild field of a station-
ary mass M is found for which the perigee, the distance of
closest approach, of the payload is b and the asymptotic ve-
locity far from the stationary mass is c! 0â . In the static field

of M, the trajectory is time-reversible. Second, the trajectory
is Lorentz-transformed to a reference frame moving with
constant velocity c! 0â , in which the mass M has a constant

velocity c 0â , and the payload is initially at rest. The Lorentz

transformation occurs between two inertial observers far from
the interaction, in asymptotically flat spacetime.

The exact equations of motion of a ballistic payload in
spherical coordinates in the static Schwarzschild field of the
mass M are [1–3]

0/ /dt d" # $% , (1)

2 2 2 2 2 2
0( / ) ( / )dr d c L r c" $ #& & % , (2)

2/ /d d L r' " % , (3)

where " is the proper time, 2
0c# is the constant total specific

energy, L is the constant specific angular momentum, and
2( ) 1 2 /r GM rc$ ( ! is the 00g component of the

Schwarzschild metric.
By substitution of Eq. (1), the equations of motion in co-

ordinate time t become

) *2 2 2 2 2 3 2
01 / /r L c r+ $ $ #% ! & , (4)

0/L cr'+ $ #% , (5)

where /r r c+ ( ! and /r c'+ '( ! are the r and ' components

of the normalized payload velocity ( )râ measured by a dis-
tant inertial observer. An overdot indicates a derivative with
respect to t.

As shown in Fig. 1(a), if the payload at perigee, r b% , has

a speed bb c' +%! , then from Eqs. (4) and (5),

0 /b bL cb# + $% , (6)

2 2 2
0 /( )b b b# $ $ +% ! , (7)

where ( )b b$ $( . And as shown in Fig. 1(a), if the payload

has a speed 0c+ far from the mass M, where 1$ , and

r r'!! " , then from Eq. (4),

2 2
0 01/(1 )# +% ! . (8)

The payload speeds far from the mass M and at perigee are
related through Eqs. (7) and (8) by

2 2 2
0(1 )b b b+ $ $ +% ! ! . (9)

Since the payload is moving in the static gravitational po-
tential of the mass M in this reference frame, the payload
speed given by Eqs. (4) and (5) is a function of r only,

2 2 1/ 2
0 0( ) [1 ( / ) ( / ) (1 )]r L cr+ $ $ # # $% ! & ! . (10)

And ( )r' is found by integrating the exact orbital equation in
a Schwarzschild field [3],

2 2 3 2 2 2
0 0( / ) 2 ( / / ) ( / )d d GM c L c L- ' - - - + #& % & & , (11)

where 1/ r- ( .
The radial acceleration of the payload,

2 2 2

2 2 2 3 2
0 0

3 3
2r

GM L GM
c

r r rc

$ $
+ $ $

# #

. /! . /
% ! & !0 1 0 10 1 2 32 3
! , (12)

indicates repulsion by the stationary mass M whenever

2
2

0 2

3
1

2 3

L GM

GMr rc

$
# $

4 5. /
6 ! !7 80 1

2 39 :
. (13)

Equation (13) is the exact relativistic strong-field condition
for ‘antigravity’ repulsion of a payload to be measured by a
distant inertial observer. A payload far from the stationary
mass M, for both r b" and 2/r GM c" , is seen to be re-

pelled by M whenever 2
0 3/ 2# 6 or 1/ 2

0 3+ !6 .

Next, we transform to the inertial reference frame shown
in Fig. 1(b), in which the mass M moves in the x direction at
constant speed 0c+ , and the mass m is initially at rest at

0 (0)r r; ;( and 0 (0)' '; ;( . (Since only unbound orbits are

considered here, 0r ; can always be chosen large enough that

0'; is negligible.) In the rest frame of M, the x and y compo-

nents of â were

cos sinx r '+ + ' + '% ! ! , (14)

sin cosy r '+ + ' + '% ! & . (15)

In the Lorentz-transformed frame, in which M moves in the x
direction at constant speed 0c+ , the components of the exact

payload velocity c ;â and acceleration cd /dt; ;â are given by
[10]

0 0( ) /(1 )x x x+ + + + +; % & & , (16)

0 0( / ) /(1 )y y x+ + # + +; % & , (17)

3
0 0(1 )

x x

x

d

dt

+ +
# + +

;
%

; &

!

, (18)

0 0

2 3
0 0

(1 )

(1 )
y x y y x

x

d

dt

+ + + + + + +

# + +

; & !
%

; &

! !

. (19)

Equations (4), (5), and (14) – (17) completely define the
exact payload velocity measured by a distant inertial observer,
to whom the mass M appears to be moving in the x direction
at constant speed 0c+ . Two cases of special interest for their

simplicity are briefly analyzed here: (1) The exact payload
velocity with purely radial motion ( 0L % ) in the strong field
of a black hole; and (2) the approximate velocity with arbi-
trary unbounded motion in a weak field.

For purely radial motion, Eqs. (4) and (14) give the exact
speed of a payload in the field of a moving black hole as

2 3 2 1/ 2
0 0

2 3 2 1/ 2
0 0

( / )

1 ( / )

+ #
+

+ #
! < !<

; %
! < !<

, (20)

where 1 /BHr r< ( ! , and BHr is the radius of the black hole.

Figure 2 shows this radial velocity of the payload for several
values of the black hole speed, 0+ .
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FIG. 2. Exact payload speed vs. normalized distance to black hole for
constant black-hole approach speeds 0+ indicated. All payloads start

from rest at 410 BHr r% .

Figure 2 illustrates several interesting results concerning
the observations of a distant inertial observer witnessing a
black hole directly approaching a payload. At any closing
speed, the final payload speed is always the speed of the black
hole, approached as the payload approaches BHr . At a closing

speed faster than 1/ 23 c! , the payload will be continuously
repelled by the black hole at any distance. At slower closing
speeds, the payload will always be seen to be repelled by the
strong field of the black hole at least within a radius 3 BHr .

Equation (18) shows that Eq. (13) is the exact relativistic
strong-field condition for ‘antigravity’ repulsion of a payload
measured by a distant observer in either inertial reference
frame. That is, either observer will see the payload repelled
when 1/ 2

0 (1 2 /3 )+ $6 ! .

For any unbounded motion of a payload about a stationary
mass, a normalized gravitational potential is defined as

0( ) ( ) /(1 )bV r # # $( ! ! , where 2 1/ 2( ) (1 )r# + !( ! . This

exact potential is the payload total specific energy, less the
specific rest plus kinetic energies, normalized to –2 times the
classical potential at perigee. In the weak-field approxima-
tion, this normalized potential, 3 2

0 0( / 2 )(1 3V R# +, ! !
2 2

0 / )R+& , plotted against /R r b( in Fig. 3, is independent

of field strength and of angular momentum. The dashed
curve is the normalized critical radius, 2 1/ 2

0(1 1/3 )cR + !% ! ,

beyond which the potential is repulsive ( / 0dV dr = ).
By combining Eqs. (4), (12), and (18) with the FitzGerald-

Lorentz contraction [10], 0/x s #;% , where 0s x ct+; ; ;( ! , the

weak field of mass M directly approaching a payload, as
measured by a distant inertial observer in the initial rest frame
of the payload (when it is far from M), is found to be

2 2
0 0/ (1 3 ) /xcd dt GM s+ # +; ; ;, ! ! . (21)

This same result can be derived from the geodesic equa-
tion. On the x axis, the weak-field metric of mass M moving
with constant speed 0c+ along the x axis is linearized as

g =diag(1, 1, 1, 1) h>? >?! ! ! & . The nonzero components of

h>? in Cartesian coordinates, ( , , , )ct x y z; ; ; ; , are 00 11h h% %
2

02(1 )+& @ , 01 10 04h h +% % ! @ , and 2
22 33 02 /h h #% % @ ,

where the dimensionless potential, 2
0 /GM c s# ;@ ( ! , satis-

fies the harmonic gauge condition, 0/ / 0t c x+; ;A@ A & A@ A % .

From the geodesic equation, the equation of motion for the
payload in the weak field of M is 2 2/d s d";

2 4
0( / ) / 0c d ds# ;& @ , . The first integrals of the motion are

FIG. 3. Normalized potential of weak gravitational field of stationary
mass vs. normalized distance for values of 0+ indicated. Above

dashed curve ( / cr b R% ), potential is repulsive ( / 0dV dr = ).

2
0 0/ (1 3 )dx d c" + +; , ! @ , (22)

2
0/ 1 (1 )dt d" +; , ! & @ . (23)

In the weak-field approximation, terms of order 2@ are ne-
glected, so that / /dx d dx dt"; ; ;, , and the acceleration of the

payload from Eq. (22) is 2 2 2 2
0 0/ (1 3 ) /d x dt GM s# +; ; ;, ! ! , in

agreement with Eq. (21).
The separation ret{ }R; of the payload and a directly ap-

proaching mass M at the retarded time ret{ } /t R c; ;! is

ret 0{ } /(1 )R s +; ;% ! . In terms of this retarded separation, the

acceleration of the payload from Eq. (21) is

5 2 2 2
0 0 0 ret/ (1 ) (1 3 ) /{ }xcd dt GM R+ # + +; ; ;, ! & ! , (24)

in agreement with the weak retarded field found by Liénard-
Wiechert methods [11].

In the weak-field approximation, the field on a stationary
test particle is the same as the field on a payload moving
freely along a geodesic, as long as the payload starts from
rest. That is, the ‘gravitomagnetic’ terms in the geodesic
equation are of the same order as terms that are neglected in
the weak-field approximation.

From Eq. (10), the minimum speed reached by the payload
in Fig. 1(a), corresponding to the maximum deceleration of
the payload by the weak static field of M, is

2 2
min 0[1 (2 / ) / ]cGM bc R+ +, ! , (25)

at the normalized critical radius, cR . From Eqs. (16) and

(25), in the Lorentz-transformed frame of Fig. 1(b), the

maximum speed delivered to a payload, initially at rest, is

2 2
max 0 0 0(2 / ) ( 1/ 3 )GM bc+ # + +; , ! . (26)

This field of a radially approaching mass is greater than that
of a radially receding mass by a factor of about 2 2

0 0(1 )# +& ,

according to Eq. (18).
The weak-field condition used to derive Eq. (26) is

2 2
0(2 / ) 1GM bc # # . Therefore, we find that the maximum

speed that can be delivered to a payload, initially at rest, by
the weak fieldof a much heavier mass moving at constant
speed 1/ 2

0 3+ !6 is max 0 01/ 3+ + +; !# . As was seen in Fig.

2, the maximum speed that can be delivered to a payload,

r/b
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initially at rest, by the strong field of a black hole directly
incident on it at any speed 0+ is max 0+ +; % .

Whether the payload is accelerated by a strong or a weak
field, the payload travels along a geodesic. The only stresses
on the payload, therefore, are the result of tidal forces in the
accelerated frame of the payload. These stresses can be ar-
ranged by choice of the trajectory to be kept within acceptable
limits. Greater practical problems for gravitational propulsion
are finding a suitable and accessible driver mass at relativistic
velocities, and maneuvering the payload in and out of the
driver trajectory.

The seeming scarcity of suitable relativistic drivers in our
galactic neighborhood may well be due to drag by just the sort
of gravitational repulsion analyzed in this paper. The analysis
found that at radial approach or recession speeds faster than

1/ 23! times the speed of light, any mass gravitationally repels
a payload at any distance. The forward ‘antigravity’ field of a
suitably heavy and fast mass might be used to propel a pay-
load from rest to relativistic speeds.
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